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FREE THERMOELASTIC SHELLS* 

N. N. ROGACHEVA 

Two-dimensional equations for free thermoelastic shells are obtained by an asymptot- 

ic method /l/ from the three-dimensional equations of thermoelasticity. It hence 

turns out that the Kirchhoff hypothesis on invariability of the length of the normal 

for a nonlinear law of the temperature variation over the thickness can result in 

substantial errors, in which connection new terms are introduced in the elasticity 

relations. 

Separation of the internal state of stress into a main state of stress and 

simple edge effects is often used to analyze unheated shells subjected to the effect 

of an external load. The method of separation is extended here to free thermoelastic 
shells. 

1. Even in the roughest approximation the equilibrium equations for free shells allow no 

simplifications, hence we shall construct only the elasticity relationships. 
The equations and notation used here are taken from /1,2/. 

Let lines ai coincide with the lines of curvature on the shell middle surface, and let 

the y-lines be orthogonal. 

We take the three-dimensional equations of state of thermoelasticity as the initial equa- 

tions 

ai=1 -+ t&+- (i#j=1,2) 
1 

(E is the elastic modulus, v is the Poisson's ratio, ri, Tiir ~3, rig are stresses, Vi, u3 are 

displacements, Ri are radii of curvature, and R is some characteristic dimension). In place 

of the symmetric stress tensor here, a nonsymmetric stress tensor Ti, Xii, ri5, zQ is introduc- 

ed, but since the stresses of both tensors differ by the quantities 0 (rl')? (11 is a small 

quantity equal to the ratio between half the shell thickness h and the characteristic dimens- 

ion R), then this difference can be neglected to the accuracy of the quantities 0 (rl') . 
The ei, mi, gi in (1.1) are expressed in terms of the displacements vi, V3 as follows 

(1.2) 

The quantities R, n, Et, 5, T, in the preceding formulas should be replaced by I313 aiv 77 

Ea,T, respectively, and the asterisks on the desired quantities should be omitted. This 

notation is needed later. 
Let us write down the condition on the face surfaces of the shell (there is no surface 

load) 

r3 l&l, = 0, Ti3 IYzf,t = 0 (1.3) 

2. We shall consider the temperature field known. We introduce the product of the 

appropriate quantity with an asterisk by na, instead of the temperature T, the stresses, 
and displacements, by selecting the exponent u in such a way that all the quantities with the 

asterisks would be of the same order 

Ecc~T = q"T,, EL’, = T)‘V3*, EVi = Tj’Vi* ) Tij = ?j’-‘*‘Cil*, Tti = TJ”Ci* (2.1) 

O(ITiCii, ~~ijdf)="(~2m2~Ti)~ O( ytjc dL_)= O(Vl'-"Zi) 9 ti3 = q l-St. r3*1 Ta = h’t,, 
--I -1 
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the index of variability of the principal state of stress. The asymptotic repres- 
.l) has been selected by using reasoning analogous to that in /l/. The powers of 

q there were selected in such a way that the boundary value problems that are obtained for 

the asymptotic taken as n+O would be consistent. 
Let us execute the scale stretching in the coordinates ai, Y customary for the asymptot- 

ic method 

Here S is 

entation (2 

(2.2) 

Differentiation of the required functions with respect to the varialbes si, 5 introduced in 
such manner does not result in a substantial increase in that functions. 

Substituting (2.1) and (2.2) into the three-dimensional thermoelasticity equations, we 

obtain (1.1) in which E should be considered equal to unity. 
For convenience in the subsequent calculations, we represent the stresses zi*, %zt in the 

form of sums 

Here 

(2.4) 

The component Zi" has been selected so that the force calculated by using it would be zero, 

and we determine r3" by integrating the third equilibrium equation after having substituted 
TIC. 

We use 0 (9') accuracy in defining the stresses Ti, Tij . Then as follows from (1.1) 

and (2.4), the displacement and temperature should be determined to the accuracy of 0 ('12-**). 
The quantity r3* enters the first formula in (1.1) with a factor q' which means accord- 

ing to the above that we shall evaluate TV.+ to the accuracy I]~-*' in this relationship with- 

in the framework of the accuracy used. To this end, we use the third equilibrium equation, 

which takes the following form after small terms have been discarded /l/: 

Integrating this equation with respect to i and taking (2.4) into account, we obtain the 

following expression for Q~: 

(2.5) 

We find the displacements by integrating the last two equations of (1.1) with respect to 

5 while taking account of (2.3) and (2.4) 
41 

The quantities with zero subscript are independent of 5. 

We substitute (2.6) into (1.2), and consequently obtain 

(2.7) 

Here gi,o,ei,o,mi.o are interpreted by means of (1.2) in which the asterisks must be replaced 
by zeroes. 

Let us go over to the notation used in shell theory in the formulas obtained. The dis- 

placements ui, w of the middle surface, the strains, the forces, and the moments are expres- 

sed in terms of the desired quantities of three-dimensional theory as follows: 
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The strains EirJ’i,Oj are determined in terms of the displacements of the middles surface by 

the formulas presented in /l/. 

Taking (l.l), and (2.3)- (2.8) into account, we obtain the following elasticity relation- 

ships for the moments after simple, but awkward, computations: 

+*‘I 

G,=-~(Xi+~~j)+~~~(~--_) s Tdy- 
3 

--h 

Tydy 1 Hij=& T 

-5 

The terms in the braces equal zero, when T is a linear function in y. 

In place of the elasticity relationships for the normal and shear forces, we obtain 

(2.9) 

(2.10) 

For a linear law of temperature variation over the thickness T = t, -t ytl the elasticity 

relationship for Gi takes the usual form 

(2.11) 

3. Let us separate the boundary conditions on the free edge into boundary conditions 

for the principal state of stress and for the simple edge effect. 

Following /3/, we-represent each of the quantities of the stress-strain state (displace- 

ments, forces, moments) in the form of a sum 

p zz p(g) + nCp("S) (3.1) 

The superscripts (B), (es) show that this quantity belongs to the principal state of stress or 

the simple edge effects, respectively. The quantities P(g) are found from the inhomogeneous 

equations (2.9), (2.10) and the equilibrium equations, while the quantities P('@ are found 

from the homogeneous equations of the simple edge effect, hence the scale factors qC are 
theirs, where the number c will be selected as a function of the boundary conditions. 

Let us write the asymptotic representation for the forces and moments of the principal 

state of stress (2.1) 

T:"= TiK,', S\$' =&S\f! , G’,“‘_ q ZS,$‘. ,,j;‘) = ,,“N;;’ 

and of the simple edge effect 

Ty&!'_ T$', Sl',"= ,,-"Se;' , @“‘= ll”&$, NY-) = N$’ 

in the boundary conditions. 

The boundary conditions on the free edge CL~ = CL," have the form 

T,' = 0, S,,' = 0, G, : 0, A',' z=z 0 

Here T,‘, S,,‘, N,’ are the reduced edge forces. By using (3.1)- (3.3), they can be 
ed as follows 

(3.2) 

(3.3) 

(3.4) 

represent- 

T"fi' 
1s 

+_ $T,;p,") = 0. S;E' $_ l,C-'S;;? _ 8, nZaGi$' I ,,r"/,G@$' : ,), +$,$(s, $_ $N;+?' = 

We neglect quantities on the order of E where 

0 (3.5) 

a = 0 ($_-s) (3.6) 

when separating the boundary conditions. 

To the accuracy taken, the primes can be omitted on the quantities of the edge effect in 
(3.5). We take the following number as c 

C = ---'I, i- 2s (3.7) 

In the roughest approximation for the simple edge effect we obtain the boundary conditions 

GfR' = -G'S' NC%') = 0 
1? 1 (3.8) 

from (3.5) with (3.6) and (3.7) taken into account. 
We express Tp"' and SrL"' on the edge in terms of the edge values of the forces and 

moments of the principal state of stress. To this end we use formulas for the magnitudes of 
the simple edge effect which are presented in /3/. 

Let us represent each of the quantities of the simple edge effect in the form of the 
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expansions 

(3.9) 

The number i after the comma denotes the number of the approximation. 

To determine T"") and $'j) at the edge, we take formulas for the zero-th approximation 
in /3/ and satisfy '&e boundary conditions (3.8), whereupon we obtain 

We insert the expansions of the forces T:"' and S:',"' of the form (3.9) into (3.5), we take 
account of (3.7), and (3.10), and we consequently obtain to the accuracy of (3.6) 

T;$' + Tff' = 8, $$ + SC:; = 0 (3.11) 

G'""' _ -G;$ 
I,1 

,,,t:" = __N;F) (3.12) 

The new quantity G'Y' r** is introduced into (3.12). It is q-‘/z+‘ times less than G$) and is 
determined in the computation of the next, more exact approximation of the principal state of 

stress. As will be shown below, G'fi' 1~* will not enter into the final result. 

We find the values of the forces r[.@!) and s$<j at the edge by using formulas of 
first-approximation of the edge effect fzm /3/ and'the boundary conditions (3.12). 

the 

We then 
substitute the values obtained T:‘f’ and , S$$ into (3.11) , and the boundary conditions for 
the principal state of stress will then become 

(3.13) 

It should be noted that conditions (3.13) and (3.8) are suitable for a computation of unheated 

free shells by the separation method since what caused the state of stress, the temperature 

field or the external load, did not play any part in their construction. 

We show by an example that the new terms introduced into the elasticity relationship (2.9) 

can alter the results of the computation substantially. Let us consider a free circular 

cylindrical shell of radius r and length nr with quadratic temperature T l,,y? sin 5 over the 

thickness (5 is the coordinate along the generatrix, (1' i:‘x). 
Using (2.10) and (2.11), we obtain the following values for the bending moments: 

The terms marked with the degree symbol appeared becuase of taking account of elongation of 

the normal element. They are missing if any other theory of thermoelastic shells is used. 

Let us estimate the error of the constructed theory. The total error is comprised of 

the error inthe equations, equal to nl, and the error in the boundary conditions (3.6), and 

since the total error equals the greatest of those admitted, then it is determined by (3.6). 

The author is grateful to A. L. Gol'denveizer for attention to the research and valuable 

consultations. 
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